当前位置: 知识学习 > 高考数学怎么考到及格分

高考数学怎么考到及格分

  • 分类:知识学习
  • 更新时间:2025-05-10
  • 发布时间:2024-05-11 04:15:11
我原来是学理科的,数学其实是一门非常死的学科,我只能说你的愿望还太低了,及格分不是一个高三学生想要得到的,高三是非常关键的一年,也是学东西最多的一年,只要用对方法,使劲全力就能有很大的突破。高中数学无非就代数,概率,函数,三角,向量,解析几
内容详情

我原来是学理科的,数学其实是一门非常死的学科,我只能说你的愿望还太低了,及格分不是一个高三学生想要得到的,高三是非常关键的一年,也是学东西最多的一年,只要用对方法,使劲全力就能有很大的突破。高中数学无非就代数,概率,函数,三角,向量,解析几何,数列,排列组合这几类,我说说我高三时候的方法吧,首先要多做题目,虽说被称为题海战术,但是你做的多了就熟练了,但是不要做了就过了,要分析出每一步的解题方法,答对的题目可以想想还有没有别的方法更简单,更省时,因为高考的时候做完所有题目的时间是不够的,做错的题目一定要弄清楚正确的解题方法,不能只更正不思考,分析每一步为什么这么来,你怎么就没有考虑到。然后就是要做好错题集,把你做错的题目用一个本子记下来,错题集可以用剪切的方法,把题目用剪刀剪下来贴在错题集本上,但是解题过程必须自己来写一遍,反复的巩固,弄清楚每一步的来历,做到错题以后绝对不错,最后还要包括一部分就是老师讲解是的重要话语,比如老师说此类题目我们需要将(An+1)=(2An)+1变化为(An+1)+1=2((An)+1),就是一个等比数列了,这就是重要的解题信息,也是这个题目的突破口,以后看到此类的题目一目了然,直接就入手了,当然也要把可能的变式写在错题姐上,将一类的题目归类,我相信你是学文科的,分类归纳的方法应该比理科生熟悉。然后大题,三角函数必须要做对,就是几个公式变来变去,这个只需要多做,多归纳,变式最多不超过三十种,公式也就不到十个,加以练习,这个分是必须拿到的。几何向量问题很死,一眼不能看出几何能解决的方法就直接毫无疑问的建系用向量,建系方法应该以能找出的直角为优先,尽量多的运用边,这个题目也是必须得分的,因为就是纯计算,死题目一个,得到结果就是分,还有这类题目很好发现你算对没有,如果你计算到后面发现很复杂,说明你有一部算错了,回头检查,总共就这么几步,计算问题而已,所以这个题目必须得分。概率排列组合题目,这类题目也是计算,高中对着部分的学习内容并不是很多,所以,我建议这类题目只需要多做题,多总结,做好改错,多举例分析,抓到这个份还是非常容易的。解析几何的题目,通常情况下第一问是非常简单的,根据题目意思,写下去,不难发现已经是你要的结果了,第二问通常情况下都是两式联立,X1+X2=?,X1*X2=?,这样的,若果真不会,把这几个写上去也可以得分,就行了。最后两题是函数与导数结合和数列问题两个,哪个前哪个后都是有可能的,函数与导数结合的第一问就是把求导做熟练,碰到什么样的函数都可以很快的看出求导方法,高中的函数貌似都是可以求导的,你可以在某个练习册或者直接在书本上找类似的,看到函数就求导,把这个练得见到函数就能反映出导数怎么求,第一问要拿下,第二问可以放弃。数列题目就是多改错,我建议你数列第二问直接放弃,耗时多,分值算起来是划不来的。选择填空题要掌握方法,像有的题目不一定是要全部算出结果,选择题可以比较答案的差异,分析一下,代入题目中,符合题目的就可以是正确答案,这样可以节约时间。填空题就要注意了,因为有错就没分的,所以要严密,开闭区间都要注意,定义域也要注意,这个不好说什么方法,只有你自己多做,但是前三题都是简单题目,必须拿下,注意好细节就好,选填题是不能有空题的情况的,不会写也要猜。跟你算下得分,选择只能错三个,填空只能错两个,这样你前面可以得50分。大题一二三题都必须拿下,36分,后三题第一问拿下12分,加起来98分!已经够及格了。说实话我高三一年的错题集每门课都是几本本子,不要懒惰,苦就是一年,大学时间能玩的都玩过,咱们也不急着一年,多做多问多改多记,越过高山外面的世界很精彩。祝你高考顺利,希望对你有帮助!

高考数学解题技巧12种

1、考前找知名机构辅导,找知名数学老师辅导自己的数学,讲清楚考试要点和考试注意事项,也能磨刀不误砍柴工。

2、自己多背诵每年都考的考点,公式,这一点非常有用。

3、锻炼自己的细心和耐心,考试的时候很多考生都说自己明明知道却粗心了,这一点是通病了,如果你能够细心,那么结果一定是好的。

4、做到临危不惧,考试就像是一场战斗,没有硝烟,但是很多人还没考就怯场了,那么你要做到临危不惧,好好考,放好心态。

5、找一个错题本,考前把错题本上面的要点都看完。

6、考前如果自己其他方面确实提高不了了,比如说后面的大题之类的,那么就多看课本上面的例题,公式,课后作业题,这一定能帮你拿一些分。

数学冲刺复习一定要把大纲中规定的核心重要考点进行梳理,结合做题来进一步的巩固,熟练把握。那么接下来给大家分享一些关于高考数学解题技巧12种,希望对大家有所帮助。

高考数学解题技巧12种

一、调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和 方法 、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

二、“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

三、沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

四、“六先六后”,因人因卷制宜

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

五、一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

六、确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

七、讲求规范书写,力争既对又全

考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、"感情分"也就相应低了,此所谓心理学上的"光环效应"。"书写要工整,卷面能得分"讲的也正是这个道理。

八、面对难题,讲究方法,争取得分

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为"已知",完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

九、以退求进,立足特殊。

发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对"特殊"的思考与解决,启发思维,达到对"一般"的解决。

十、执果索因,逆向思考,正难则反

对一个问题正面思考发生思维受阻时,用 逆向思维 的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

十一、回避结论的肯定与否定,解决探索性问题

对探索性问题,不必追求结论的"是"与"否"、"有"与"无",可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

十二、应用性问题思路:面—点—线

解决应用性问题,首先要全面调查题意,迅速接受概念,此为"面";透过冗长叙述,抓住重点词句,提出重点数据,此为"点";综合联系,提炼关系,依靠数学方法,建立数学模型,此为"线",如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景

高考数学大题答题技巧

一、三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题

1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2、搞清是什么概率模型,套用哪个公式;

3、记准均值、方差、标准差公式;

4、求概率时,正难则反(根据p1+p2+...+pn=1);

5、注意计数时利用列举、树图等基本方法;

6、注意放回抽样,不放回抽样;

7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

8、注意条件概率公式;

9、注意平均分组、不完全平均分组问题。

五、圆锥曲线问题

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3、战术上整体思路要保7分,争9分,想12分。

六、导数、极值、最值、不等式恒成立(或逆用求参)问题

1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

2、注意最后一问有应用前面结论的意识;

3、注意分论讨论的思想;

4、不等式问题有构造函数的意识;

5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

6、整体思路上保6分,争10分,想14分。

高考解答题答题须知

1、注意分步解答题目的形式,若各个小问题由一个大前提统领,则很可能上面的结论是下面问题的条件,要注意这一点,同时若小问题单独添加了限制条件,则其结论不可应用于下一个小问题的解答,所以应仔细审题,不可疏忽。

2、在运算过程中要求一次性运算准确,否则若出现运算失误,考生往往受思维定式的影响,很难检查出来。只要细心了,对自己就要有信心,不要一道题做了再反复去检查是否准确,那样会浪费大量宝贵的时间,在此问题上应把握“宁慢勿粗”。

3、对于解答题,要注重通性通法,不要过于追求技巧,把高考神秘化。因为高考越来越注重基础与通性通法的考查。举个例子来说吧,解析几何对大部分学生来说很难得全分,通常解析几何放在高考最后一题或倒数第二题的位置,算是一个压轴题吧。这类解析几何题的通法就是把直线方程与曲线方程联立,虽然有些时候可能计算会比较麻烦,但是都能做得出来。如果过于关注技巧,对有些题目就不适用了。

4、对绝大部分同学来说,要把主要精力和时间放在常规题目上(一般是指前19道题和最后1道选做题)。从高考的试卷来看,它的基础分可能会占到百分之七八十,如果你把基础题、常规题做好了,取得中等成绩是没问题的。在这个基础上,再拿一些难题的分数,就能获得比较理想的分数了。反过来,如果求快心切,就很容易在前面的基础题上出现本来可以避免的失误,而后面的难题又不一定得分,这样和别人的差距就拉大了,很吃亏。

高考数学解题技巧12种相关 文章 :

★ 2020高考数学的12种解题思路!

★ 高考数学选择题答题技巧汇总大全

★ 高考数学常见的解题策略

★ 2020高考数学的12个答题模板!

★ 高考数学答题技巧大全

★ 高考数学的解题技巧有哪些

★ 2020高考数学解题技巧大全

★ 高考数学6大解答题技巧

★ 高考数学题解题方法与七大知识点总结

★ 高考数学常用答题技巧参考

点击查看全部内容