0是介于-1和1之间的整数,是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。
0是整数和自然数
(一)整数
我们以0为界限,将整数分为三大类:
1.正整数,即大于0的整数如,1,2,3······直到n。
2.零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。
3.负整数,即小于0的整数如,-1,-2,-3······直到-n。(n为正整数)
(二)自然数
自然数是指表示物体个数的数,即由0开始,0,1,2,3,4,……一个接一个,组成一个无穷的集体,即指非负整数。
综上所述,0既是自然数,是整数。
0的性质(1)0是最小的自然数。
(2)0不是奇数,而是偶数。
(3)0不是质数,也不是合数。
(4)0既不是正数也不是负数,而是正数和负数的分界点。
(5)0是介于-1和1之间的整数。
(6)0的绝对值是其本身,即,∣0∣=0。0的相反数是0,即,-0=0。
(7)0没有倒数.
(8)0乘任何实数都等于0,0除以任何非零实数都等于0;任何实数加上或减去0等于其本身。
(9)0是一个有理数。
答: 小学里学的是自然数,过去的老教材不把0算作自然数,但21世纪的规定则是:整数包括正整数、负整数和0,而0和正整数合起来又叫做自然数。小学只学了正整数和0(即 自然数),所以,现在小学的正确说法应当是:最小的整数是0。(到了中学就知道,没有最小的整数。)
0是整数:带小数的不是整数,如 1.33, 2.65431. 整数如-1,0,1,2,3,4....
0不是自然数:自然界里如何表达0?没有就是没有。所以0不是自然数.
-----------------------------------------------------------------
反正我们以前教的时候书说不是自然数.....好吧...上网查了下
从历史上看,国内和国外对于0是不是自然数历来有两种规定:一种规定0是自然数,另一种规定0不是自然数。建国以来,我们国家的中小学教材一直规定自然数**不包括0。
现在,国外的数学界,大部分都是规定0是自然数,为了国际交流的方便,《国家标准》中规定,自然数集包括0。因此,在我们新出版的教材中,按照《国家标准》进行了这样的处理,原来的自然数**现在称为正整数集。
整数是正整数、零、负整数的**。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。
整数的概念:
1、整数的意义:自然数和0都是整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
整数的读法:
先分级,再从最高级读起,亿级、万级的数,要按照个级的数的读法来读,再在后面加上一个亿或万字,每级末尾不管有几个零都不读,其他数位上有一个0或连续几个零都读只读一个0。
整数的写法:
先分级,再从最高级写起,数位上是几就写几,哪个数位上一个单位也没有,就在那个数位上写0。
以上内容参考:百度百科-整数
零是整数,是自然数,既不是正数,也不是负数,它是介于-1和1之间的数。写作:0,读作:零。零没有倒数。
0是介于-1和1之间的整数。0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的平方根是0,0的立方根是0,0乘任何数都等于0。0不能作为分母出现,0的所有倍数都是0。
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
整数
整数(Integer)
序列
…,-2,-1,0,1,2,…
中的数称为整数.整数的全体构成整数集,它是一个环,记作Z(现代通常写成空心字母Z).环Z的势是阿列夫0.
在整数系中,自然数为正整数,称0为零,称-1,-2,-3,…,-n,… 为负整数.正整数,零与负整数构成整数系.
正整数是从古代以来人类计数(counting)的工具.可以说,从「一头牛,两头牛」或是「五个人,六个人」抽象化成正整数的过程是相当自然的.事实上,我们有时候把正整数叫做自然数(the natural numbers).
零不仅表示「无」,更是表示空位的符号.中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空 位记号,但仍能为位值记数与四则运算创造良好的条件.印度-***命数法中的零(zero)来自印度的(sunya)字,其原意也是「空」或「空白」.
中国最早引进了负数.《九章算术.方程》中论述的「正负数」,就是整数的加减法.减法的需要也促进了负整数的引入.减法运算可看作求解方程a x=b,如果a,b是自然数,则所给方程未必有自然数解.为了使它恒有解,就有必要把自然数系扩大为整数系.
正整数,零,和负整数合称整数(the integers).整数是人类能够掌握的最基本的数学工具.十九世纪德国伟大数学家 Kronecker因此说:「只有整数是上帝创造的,其他的都是人类自己制造的.」
一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z ).
自然数就是没有负数的整数,即0和正整数。(如0,1,2……)
整数就是没有小数位都是零的数 ,即能被1整除的数(如-1,-2,0,1,……)。
有理数是只有限位小数(可为零位)或是无限循环小数(如1,1.42,3.5,1/3,0.77777……,……)。
实数是相对于虚数而言的,是无理数和有理数的总称。
自然数是正整数
整数是能被1整除的数
有理数是整数和分数(有限小数和无限循环小数)
实数包括有理数和无理数(无限不循环小数)
是的。
0是介于-1和1之间的整数,是最小的自然数,也是有理数。任何数与0相加或相减,它的值都不变;相同的两个数相减等于0,任何非零实数与0相乘都等于0;0除以任何非零实数都等于0,但0不能作为除数。
扩展内容:
从历史上看,各国对于0是不是自然数历来有两种规定:一种规定0是自然数,另一种规定0不是自然数。
中国的中小学教材原先规定自然数集不包括0。但中国之外的数学界,大部分都是规定0是自然数,为了国际交流的方便,《国家标准》中规定,自然数集包括0。
因此,在我们新出版的教材中,按照《国家标准》进行了这样的处理,自然数**先现代称为正整数集。同时,我们也按照国家标准的规定规范使用了一些数学符号的表示方法。
从使用上看,规定自然数**是否包括0并无太大影响。作为序数,从0开始和从1开始是一样的;以前我们所说的n∈N,只要说n是正整数(n∈N*)就可以了。